
Nucleic Acids Research, 2008, 1–10
doi:10.1093/nar/gkn137

The biological function of some human transcription
factor binding motifs varies with position relative to
the transcription start site
Kannan Tharakaraman1, Olivier Bodenreider2, David Landsman1,

John L. Spouge1 and Leonardo Mariño-Ramı́rez1,*

1Computational Biology Branch, National Center for Biotechnology Information and 2National Library of Medicine,
National Institutes of Health, 8600 Rockville Pike, MSC 6075 Bethesda, MD 20894-6075, USA

Received February 14, 2008; Revised March 11, 2008; Accepted March 12, 2008

ABSTRACT

A number of previous studies have predicted tran-
scription factor binding sites (TFBSs) by exploiting
the position of genomic landmarks like the transcrip-
tional start site (TSS). The studies’ methods are
generally too computationally intensive for genome-
scale investigation, so the full potential of ‘positional
regulomics’ to discover TFBSs and determine their
function remains unknown. Because databases
often annotate the genomic landmarks in DNA
sequences, the methodical exploitation of positional
regulomics has become increasingly urgent.
Accordingly, we examined a set of 7914 human
putative promoter regions (PPRs) with a known
TSS. Our methods identified 1226 eight-letter DNA
words with significant positional preferences with
respect to the TSS, of which only 608 of the 1226
words matched known TFBSs. Many groups of genes
whose PPRs contained a common word displayed
similar expression profiles and related biological
functions, however. Most interestingly, our results
included 78 words, each of which clustered signifi-
cantly in two or three different positions relative to
the TSS. Often, the gene groups corresponding to
different positional clusters of the same word
corresponded to diverse functions, e.g. activation
or repression in different tissues. Thus, different
clusters of the same word likely reflect the phenom-
enon of ‘positional regulation’, i.e. a word’s regula-
tory function can vary with its position relative to a
genomic landmark, a conclusion inaccessible to
methods based purely on sequence. Further inte-
grative analysis of words co-occurring in PPRs also
yielded 24 different groups of genes, likely identifying

cis-regulatory modules de novo. Whereas compara-
tive genomics requires precise sequence align-
ments, positional regulomics exploits genomic
landmarks to provide a ‘poor man’s alignment’. By
exploiting the phenomenon of positional regulation,
it uses position to differentiate the biological func-
tions of subsets of TFBSs sharing a common
sequence motif.

INTRODUCTION

In the postgenomic era, the identification of signals
regulating transcription remains an outstanding problem
(1,2). The problem has frustrated standard methods in
computational sequence analysis, and experiments still
provide one of the few consistently reliable sources of
information about transcriptional signals (3). Even simple
cis-regulatory transcription-binding sites (TFBSs) have
proved notoriously difficult to identify de novo, because
they usually correspond to short, degenerate motifs whose
sequence information is insufficient on its own for
dependable predictions. In particular, sequence analysis
alone is generally unable to address the information that
higher-order chromatin structure contributes to gene
regulation (4).
Consider, however, a transcriptional complex anchored

on a transcription start site (TSS). Each transcription
factor (TF) within the complex occupies a particular
position. Thus, if a TF interacts with a TFBS, the TFBS
probably is constrained positionally with respect to the
TSS. Moreover, as classic experiments on the lambda
repressor and its operator-binding sites showed, by
occupying TFBSs in different positions, a single TF can
assume different biological functions (5). Rather like a
receptor antagonist occupying a binding site, a TFBS
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corresponding to the TF might activate in one position
relative to the TSS, but repress in another. Because of
position, therefore, a single TFBS motif might regulate
gene expression in a tissue- or temporal stage-specific
manner (or both). Positional regulation of function
generalizes obviously and broadly, to regulatory elements
and genomic landmarks other than TFBSs and TSSs.
In the presence of positional regulation, sequence alone

would be insufficient to predict TFBS function.
Fortunately, many modern databases annotate their
sequences. Consequently, where the traditional conference
slide in computational biology once displayed an endless
sea of letters, it should now display letters punctuated
regularly by genomic landmarks like the TSS, exon
boundaries, etc. Presently, genomic investigations are
not exploiting the position of annotated landmarks as
much as they might.
Positional regulomics therefore holds promise, but it

requires in hand a rich source of interesting regulatory
positions. With regard to TFBSs, some computational
studies have examined position (6–10), but few new
putative motifs emerged. In contrast, our previous work
discovered 791 eight-letter DNA words displaying posi-
tional preferences with respect to the TSS (11). To
summarize the work, the Database of Transcription
Start Sites (DBTSS) contained many human TSSs
determined from oligo-capping experiments (12–14).
False positive TSSs were eliminated by precise transcript
mapping, yielding a database of 4737 putative promoter
regions (PPRs) containing positions �2000 to þ1000 bp
relative to the corresponding TSS (15). For each of the 48

eight-letter DNA words, a local maximum statistic
(similar to the BLAST statistic) assessed the word’s
positional preferences with respect to the TSS (11). After
multiplying by 48 to correct for multiple testing, the
analysis yielded 791 statistically significant words
(P� 0.05). Of the 791 words, 388 had perfect matches in
TRANSFAC database (16), an event with a P-value
of 4� 10�42. The biological function of the other 413 of
the 791 words remained unidentified, but suggested the
potential of positional regulomics to discover unknown
sequence elements and their function.
To give an overview of the present study, with recent TSS

data (17), the PPR dataset now contains 7914 sequences
(see theMethods section). Within the new PPR dataset, the
local maximum statistic identified words w displaying
positional preferences with respect to the TSS. (To avoid
unnecessary repetition of the phrase ‘with respect to the
TSS’, all bp coordinates and positions below refer
implicitly to the corresponding TSS, unless stated other-
wise.) Each statistically significant positional preference
yielded a ‘cluster’ of positions containing the correspond-
ing word w, and each of the clusters corresponded to a
group of genes (‘gene group’). Occasionally, a single word
w corresponded to more than one cluster, hinting at
the possibility of a TFBS under positional regulation,
and rendering such words particularly interesting to us.
Two external sources of information implicated the

positional clusters in the co-regulation of the correspond-
ing gene group. First, quantitative functional relationships
were determined using a semantic similarity method (18)

based on the Gene Ontology (GO) annotation. The
functional analysis suggested that many individual gene
groups had a common biological function. Second, the
microarray experiments in the GNF Atlas 2 (19) suggested
that many individual gene groups identified here were
co-expressed across multiple tissues. In addition to
validating the biological functionality of words and
helping to classify the corresponding putative TFBS, the
two sources of information permitted us to formulate
some novel biological hypotheses. In accord with the
notion of positional regulation, our analysis sometimes
linked different tissues to specific positions of a word, to
our knowledge yielding the first computational evidence
that a TFBS’s position can influence the tissue-specificity
of its regulatory functions. Furthermore, in accord with
the analogy to receptor antagonists, our analysis some-
times linked different levels of activation or repression
of the same gene group in different tissues to specific
positions of a word. Thus, it is not an isolated
phenomenon in human gene regulation, that the position
of a TFBS influences its function in a regulatory module.

METHODS

The PPR database

Recently, (17) determined new TSSs with about 1.8
million 50-end clones of full-length human cDNAs,
extending the DBTSS. DBTSS yielded 30 924 TSSs for
14 628 RefSeq (20) human genes, indicating that many
genes have alternative TSSs. The PPR database was
constructed using every TSS within �1000 bp of the start
of an annotated RefSeq transcript for annotated genes. If
several TSSs were within �1000 bp of the same RefSeq 50

end, the closest TSS was used. The corresponding PPRs
in DBTSS were aligned to the human genome (NCBI,
build 36). Each PPR that mapped unambiguously was
extended to include from �2000 to þ1000 bp relative to
the TSS (which was at 0 bp), as in our previous study (11).
The final PPR database contained 7914 sequences. An
ungapped block alignment then anchored the PPRs,
placing all TSSs in a single column. Supplementary
Figure S1 shows systematic variations in base composition
over the alignment columns, confirming that the anchored
alignment generally placed the TSSs correctly.

Our previous study describes in detail the remaining
procedures, applied to every one of the 48 eight-letter
DNA words. For each word and for each PPR, one
instance of the word was chosen uniformly at random,
and the remaining instances masked. At the end of the
masking procedure, each PPR contained at most one
unmasked instance of the word, in a random position. The
unmasked instances in each column of the block align-
ment were counted, and a local maximum statistic (similar
to the gapless BLAST statistic) assessed whether the
unmasked instances of the word were unusually clustered
by columns within the block alignment (see Supple-
mentary data—Section 1.1). The randomized masking
step reduces the density of ubiquitous repetitive elements
or low complexity regions (e.g. poly A, poly T), which are
biologically uninteresting in the present context but which
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tend to be statistically significant without masking. Our
study examined clusters with a significant local maximum
statistic, a ‘cluster’ being simply a statistically significant
set of positions within certain PPRs.

Pairwise correlation coefficient for microarray data

Given the set of n=74 tissue-specific microarray expres-
sion values (Xi,Yi) for two genes g1 and g2, the
corresponding Pearson correlation coefficient is

r ¼

Pn
i¼1 Xi � �X
� �

Yi � �Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Xi � �X
� �2Pn

i¼1 Yi � �Y
� �2q : 1

Pairwise correlation coefficient for significant words

Each significant word W provided a pairwise similarity
corresponding to TFs in TRANSFAC (16), as follows.

We used 522 count matrices from TRANSFAC
Professional 11.1, many of which represent the same or
similar factors. To make the set nonredundant, we skipped
all nonvertebrate matrices, and if a family of related
factors shared a single matrix, the matrix appeared once,
to represent the entire family. For each of the 145
nonredundant count matrices remaining, the standard
log-likelihood ratio yielded a PSSM as follows: Let pn
represent the background probability of nucleotide
n2 {a, c, g, t} in the 7914 PPRs. Let cn,k represent the
count of nucleotide n in column k. Then, the score for
nucleotide i at column k is

s
n, k
¼ ln

cn, k þ an
cþ a

� �
=p

n

� �
, 2

where c=�n2 {a,c,g,t} cn,k is the total number of counts,
which is independent of the column k (being the total
number of TFBSs in TRANSFAC corresponding to the
TF in question,); an is the pseudo-count, which regularizes
count matrices based only on a few TFBSs; and
�=�n2 {a,c,g,t} �n. As in previous studies (11), we took
an=1.5� pn.

With the 145 nonredundant PSSMs in hand, we
calculated match scores for each word W and PSSM M,
as follows: Each PSSM was padded with eight columns of
0s on each side. As above, let sn,k denote the score for of
nucleotide n in column k, where k ¼ �8, . . . , � 1, 0, . . . ,
j� 1, j, . . . , jþ 7, the columns k=0, . . . , j �1 being from
the original PSSM. The wordW=W(0), . . . ,W(7) receives
a maximum score

SM,W ¼ maxi¼0,..., jþ7
X7
a¼0

sW að Þ, i�8þa: 3

The summed score on the right of Equation (3) can
be related to the binding energy of the TF for the putative
TFBSs (21). The maximum score SM,W is the best
summed score that the word W receives in any offset
against PSSM M.

With the maximum scores SM,W in hand, we calculated
empirical P-values for each word W from our significant

clusters, as follows. For each PSSM M, all eight-letter
words yielded 65 536 maximum scores SM,W against the
PSSM. For any word W, consider the corresponding
maximum score SM,W. The empirical P-value pM,W for
the sequence W against the PSSM M is the fraction of the
8-mers that have a maximum score higher than SM,W. The
complement 1�PM,W of the P-value then should increase
with the binding energy for the word W and the TF
generating the PSSM M. The complement 1�PM,W is
also normalized between 0 and 1.
Now, let i=1, . . . ,145 index the nonredundant PSSMs

M; and let g=1, . . . ,3589 index the genes in our dataset.
If the wordsW1, . . . ,Ww correspond to the gene with index
g, define Tg,i=maxw=1, . . . ,w (1�Pi,w) (i=1, . . . ,145) if
w> 0 and 0 otherwise.
In the table {Tg,i}, the rows represent the genes; the

columns, TFs. When Equation (1) is applied to Xi=Tg1, i

and Yi=Tg2, i
, which correspond to the genes g1 and g2, it

yields the Pearson correlation coefficients (PCCs) between
rows in the table {Tg,i}. Two genes therefore receive a high
PCC, if they correspond to similar words, regardless of the
words’ positions. The resulting network still reflects
putative TFBSs as predicted by positional preference,
however.

The integration of positional, functional and
co-expression data

Three networks were constructed using positional, functi-
onal and co-expression data. In the corresponding net-
works, an edge joined a gene pair, if the pair scored above
the 95th percentile for the corresponding measure:
(i) 0.566 for the Pearson correlation coefficient quantifying
TF positional similarity; (ii) 0.588 for the GO semantic
similarity or (iii) 0.546 for the PCC from the microarray
Atlas data. The networks were analyzed using Cytoscape
(22), software freely available from http://www.cytoscape.
org for visualizing molecular interaction networks. The
Graph Merge plug-in, also freely available from http://
www.cytoscape.org, produced the intersection network
(see Supplementary Figure S3) whose edges lie in all three
networks. Supplementary Table 2 lists numbers of nodes
and edges, and average degrees for each of the four
networks. The MCODE Cytoscape plug-in (23) identified
24 densely connected sets of genes in the intersection
network.

RESULTS

Many words displaying positional preferences are
probably functional

After multiplying P-values by 48 to correct for multiple
testing, our methods yielded 1226 eight-letter words with
significant positional preferences (P� 0.05). Out of the
1226 words, 71 words corresponded to two significant
clusters with distinct positions and seven words corre-
sponded to three significant clusters with distinct posi-
tions, for a total of 1311 significant clusters. (To avoid
unnecessary repetition, all the ‘words’, ‘clusters’, and ‘gene
groups’ mentioned below are significant at P� 0.05 after
multiple test corrections, unless stated otherwise.)
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Supplementary data file 1 contains the words and their
clusters. To identify similar or overlapping words, we
varied one base within each word, but few words were
similar or overlapped. Only 608 of the 1226 words exactly
matched subsequences of experimentally determined
TFBSs in the TRANSFAC database. To discover relation-
ships between the words and basal promoter elements like
the CAAT box, SP1, CREB and TATA box (recognized by
the constitutive human factors NF-Y, SP1, CREB and
TBP, respectively), we again varied one base within each
word. With a change of at most one base, 540 of the 1226
words exactly matched a consensus subsequence of one of
the basal promoter elements. Because the regions sur-
rounding many human genes are GC-rich, we examined
the sequence composition of the words. Within the 1226
words, the frequencies of A, C, G and T were 0.159, 0.318,
0.376 and 0.146, respectively. Moreover, 123 words
(�10%) contained only G and C, but only eight words
(�0.65%) contained only A and T. Thus, the words do
indeed reflect the elevated GC content around the TSS
(Supplementary Figure S1).
Our previous study only found TFBSs from �200 bp to
þ100 bp relative to the TSS at 0 bp. Moreover, to permit a
genome-scale study, our methods here ruthlessly sacrificed
statistical power in favor of computational speed, so they
probably found a small fraction of all functional TFBSs
(which our unpublished data estimates loosely at a site-
level sensitivity of about 15%). As expected, clusters
upstream of the TSS were all within �200 bp relative to
the TSS, indicating that our methods do not find TFBSs
distant from the TSS. Clusters downstream of the TSS
usually occurred within þ100 bp. Cluster density peaked
roughly at the TSS. Some 44 clusters were positioned more
than þ100 bp downstream of the TSS. A consensus GT
dinucleotide appeared in 22 of the corresponding words,
suggesting their role in mRNA splicing.

Many clusters correspond to gene groups with
a common function

We investigated the (significant) gene groups for common
functions, analyzing annotations from the GO database
(24). Although several tools for analyzing GO annotations
are publicly available (25–27), none was entirely suitable
for our study, so we developed other methods ourselves.
Accordingly, we used semantic similarity measures to

quantify the commonalities of molecular function for each
pair of the 15 536 Homo sapiens gene products with GO
annotations (18) (see Supplementary data—Section 1.3).
The semantic measures yielded a maximum average
pairwise functional similarity (APFS) within each gene
group. Similarly, we calculated an APFS for 106 random
gene groups, each random group chosen uniformly from
the PPR dataset to match the size of the original gene
group. The fraction of random groups with a larger APFS
than the original group yielded an empirical p-value
for the original group’s APFS. Of the 1311 clusters, 502
had a significant APFS [P� 0.05; false-discovery rate
(FDR)=5.3%] (see Figure 1).

Many clusters correspond to co-expressed gene groups

If a (statistically significant) cluster represents TFBS
instances with a common function, the corresponding
gene group might be co-expressed. Accordingly, we
analyzed expression patterns in microarray experiments
from the GNF Atlas 2 (19). The microarray Atlas
facilitated the generation of a cross-table, where the rows
correspond to 7914 genes downstream of the PPRs and the
columns to normalized expression values for 74 human
tissues. Consider two clusters and the two corresponding
gene groups. For each gene group, the cross-table yielded a
pairwise Pearson correlation coefficient (PCC) for their
expression values. The substitution of the PCC for the
APFS in the procedure above yielded an empirical PCC
P-value. Of the 1311 clusters, 529 had a statistically
significant PCC (P� 0.05; FDR=2.6%) (Figure 1). As
further validation of biological functionality, 273 words
had both a significant APFS (functional) and a significant
PCC (co-expression) similarity (P� 0.05).

Having established that the gene groups tended to have
common GO functions or co-expression, we then exam-
ined their tissue-specificity. In a particular tissue (column),
the cross-table from the microarray Atlas implicitly ranks
each gene (row) according to its expression. For each gene
group, the Mann–Whitney rank sum statistic quantifies
the expression enrichment for a particular tissue in the
gene group relative to other genes. Among the
1311� 74=97 014 gene group-tissue pairs, 1737 showed
enriched expression (at P� 0.001 without multiple test-
correction, corresponding to a FDR 5.58%). Of the 1311
gene groups, 450 showed enrichment in at least one tissue,
with 58 groups showing enrichment in more than 10
tissues. The vast majority of the gene groups (about 525 of
the 1311 groups) showed enriched expression specifically
in white blood cells (dendritic, NK, B and T cells),
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Figure 1. Empirical P-values of clusters estimated from simulation.
The figure plots the count of clusters whose empirical P-value did not
exceed a particular threshold against the P-value threshold. The
empirical P-values were estimated from microarray data (closed
triangles) and GO-derived functional similarity data (open triangles).
The empirical P-values of nonconserved clusters are shown separately
for the microarray data (closed circles) and GO-derived functional
similarity data (open circles).
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generally agreeing with the conclusion of a recent study on
motif discovery in the human genome (28).

Recall that 273 gene groups had both common GO
functions and co-expression at significant levels (P� 0.05).
Of the corresponding 273 words, 114 exactly matched
subsequences of known human TFBSs in TRANSFAC.
Additionally, experimental evidence linked 44 of the TF
motifs in TRANSFAC matching positionally significant
words to one or more of the tissues showing enrichment of
the matched word’s gene group. Table 1 lists the predicted
tissue of enriched expression and the TRANSFAC TF
for a randomly selected subset of these 44 words.
Supplementary Table 1 in the additional files gives the
complete information for all 44 words.

Positional preference is essential to establishing the
trends described above; standard sequence analysis alone is
insufficient. Two additional lines of evidence support our
hypothesis linking TFBSs’ locations with tissue-specific
usage. First, if a single word corresponded to two or three
different positional clusters, the clusters often corre-
sponded to gene groups expressed in strikingly different
tissues. For instance, the TRANSFAC binding element
for AP-2alphaA, c-Ets-2, Sp1, represented by consensus
CGCCGCCG, yields two significant clusters at �17 and
þ14 bp, respectively. While the upstream cluster showed
overexpression in fetal brain, the downstream cluster
showed overexpression in BM-CD71þEarlyErythroid
and Thyroid. Thus, these TFs might use position-specific
binding to drive differential tissue-specific activation.

Other factors exhibiting a similar phenomenon include
ER-alpha, T3R-beta1, Sp1, Ets (CAGGTGAG) and Sp1,
Sp3, MyoD, AP-2beta (GCGGGGCC). On the other
hand, some factors might use position-specific binding to
cause tissue-specific repression. Such factors include p53
(GCGGCGGG), Sp1, HIF-1, GKLF, NF-Y, CTCF (GG
CGGCGC) and Sp1, Sp3, MyoD, AP-2beta (GCGGG
GCC) (Table 2). Second, for each of the 273 clusters des-
cribed earlier, we selected a gene group of equal size as a
negative control. Each gene in the control group had a
PPR containing the relevant word between �200 and
þ100 bp, but with no other positional restriction. As
expected, the Mann–Whitney rank sum test showed that
unlike the actual gene groups, the control gene groups
did not display any noticeable tissue specificity (see
Supplementary Figure S2a and S2b).

The position of a TFBS can influence its function

There were 78 words (about 6.4% of all 1226 words) with
two or three different significant clusters. These 78 words
presented a unique opportunity to see whether the
sequence of a TFBS is sufficient to determine its biological
function. The 78 words generated 92 pairs of gene groups,
each pair corresponding to a single eight-letter word but
to two different positional clusters. If a TFBS had diverse
roles (e.g. activation and repression) in different tissues, it
might yield a pair of gene groups with significantly
different expression patterns across the 74 tissues in the

Table 2. TFBS words corresponding to two clusters, and thereby displaying possible positional regulation of TF tissue specificity

DNA Word Factor Distance from
TSS (bp)

Tissues Activation(þ)/
Repression(�)

CAGGTGAG ER-alpha, T3R-beta1, Sp1, Ets 158,a 104b WHOLEBLOOD,a Amygdalab þ

CGCCCCGC E2F-1, AP-2alphaA, NRF-1, Egr-1 �59,a �176b Cardiac Myocytes,a Uterus Corpusb �

CGCCGCCG AP-2alphaA, c-Ets-2, Sp1 14,a �17b BM-CD71þEarlyErythroid,a Thyroid,a fetalbrainb þ

GCGGCGGG p53 20,a �56b TrigeminalGanglion,a Appendixb �

GCGGGGCC Sp1, Sp3, MyoD, AP-2beta �57,a �15b Bronchialepithelialcells,a 721_B_lymphoblasts,b

SmoothMuscleb
þ

GGCGGCGC Sp1, HIF-1, GKLF, NF-Y, CTCF �39,a 19b Ovary,a AdrenalCortex,b Appendix,b OlfactoryBulbb �

For simplicity, only three examples have been provided for each case (activation and repression). The rows in the table reflect the lexicographic order
of the words in column 1. Each word corresponds to TFs in column 2. Each word corresponds to two clusters, whose average positions relative to
the TSS are in column 3. Superscripts link the entries in columns 3 and 4, to indicate the relation between the position-specific binding and the tissue-
specific regulation of each TF.

Table 1. Tissue specificity of DNA words and their association with known transcription factors

DNA Word Factor Enriched Tissues P-value
(expression similarity)

P-value
(GO functional similarity)

CCGGAAGC Sp1, c-Ets-1, Ets-1, GABP-alpha,
GABP-beta, STAT1, STAT3

PBCD4þTcells,
PBCD8þTcells, Prostate

1.00E-06 3.24E-03

CGCGATGG Egr-1 Adrenal gland 1.00E-06 1.49E-02
GCCGCCAT YY-1 PBCD4þTcells, PBCD8þTcells 1.00E-06 4.30E-05
GCCTGCGC NRF1, Sp1, Sp3 Thyroid 1.00E-06 8.88E-03
GGCGGGGC Sp1, Sp3, NF-Y Amygdala, Prostate 1.00E-06 7.42E-03
GGTCACGT Sp1, Sp3, ATF-1 PLACENTA 1.00E-06 1.81E-02
TTCCGCGC E2F1, Sp3 PBCD4þTcells, PBCD8þTcells,

Thymus
2.20E-02 2.24E-02

The last columns give the P-values of clusters (estimated by simulation from microarray data and GO-derived functional similarity data). The rows in
the table reflect the lexicographic order of the words in column 1.
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GNF Atlas 2 microarray dataset. For each of the 92 pairs,
a one-sided Mann–Whitney P-value quantified the relative
expression of the two gene groups in the 74 tissues. The
Fisher inverse chi-squared test (29) assessed the product of
the 74 one-sided Mann–Whitney P-values, and its two-
sided P-value for the product indicated the overall
differences in expression between the two groups (see
Supplementary data––Section 1.4). After multiplying by
92 to correct for multiple testing, seven pairs were
statistically significant (P� 0.05). Table 3 presents results
for significant pairs of gene groups (P� 0.05, after
multiplying by 74 to correct for multiple testing).

A comparison of results from positional and
sequence-based methods

For a TFBS conserved across several species, comparative
genomics uses a multiple alignment across the species to
narrow the TFBS search to regions of high conservation
(7,30). Positional regulomics might have at least two
potential advantages over comparative genomics in
identifying TFBSs. First, because positional regulomics
does not require accurate sequence alignments, it can find
TFBSs in poorly conserved regions. Second, it does not
depend on undependable details of the background DNA
sequence, thereby reducing the false positive rate of its
predictions.
The first potential advantage suggests the following

question. Do comparative genomics and its requirement
for sequence conservation obscure TFBSs that positional
regulomics might find? Let a cluster be partially or less
conserved if >20% of positions in it occur in noncon-
served regions within the human genome, as determi-
ned by human/mouse genome alignment (hg17/mm7
assembly) of the UCSC Genome Browser. Of the 1311
clusters, 42 clusters contained 20% or more positions in
nonconserved regions; of these, 12 contained 75% or more
positions in nonconserved regions. Thus, sequence con-
servation considerations had little influence on the 1311
clusters of positions. Out of the 42 nonconserved clusters,
26 and 29 clusters appeared significant (P< 0.05) under
our analysis using expression and functional similarity
data, respectively (Figure 1).
To assess the second potential advantage and to

compare false positives from positional and comparative
genomics, consider a recent study that identified 54 702
putative human TFBSs by aligning human, mouse,

rat and dog genomes (7). The present study identified
46 670 putative TFBSs, a comparable number. The spatial
distribution of transposable elements (TEs) around the
TSS may be an indicator of the relative false positive rates
in the two studies. TEs comprise about 45% of the human
genome and might contribute a substantial fraction of
regulatory elements (31,32). However, a sharp decline of
TEs around the TSS (33) indicates selection against their
insertion in functionally important regions like core
promoters where many regulatory elements are posi-
tioned. RepeatMasker <http://www.repeatmasker.org>
was used to determine TE locations using the RepBase
library of repeats (34). The total TE count was 24 878,
including SINEs, LINEs, LTR elements, DNA elements
and other unclassified elements. Overall, the masked
regions represented 23% of our dataset.

Figure 2 shows distributions of positions relative to the
TSS: Figure 2A, of TE-rich regions; Figure 2B, of
‘comparative TFBSs’ [predicted in (7)]; and Figure 2C,
of ‘positional TFBSs’ [predicted in the present study].
TE-rich regions overlapped with 122 comparative TFBSs
but with only 50 positional TFBSs (two-sided Fisher exact
P=7.8� 10�6). Positional TFBSs had a tight distribution
from about �200 to þ100 bp relative to the TSS, whereas
comparative TFBSs were relatively widespread, from
about �500 to þ500 bp. The positional TFBSs become
rare as TEs become common away from the TSS. Figure 2
suggests that the positional methods are relatively
insensitive to input sequence lengths, because they predict
TFBSs only near their genomic anchor, namely, the TSS
in the present study. In any case, Figure 2 suggests that in
the cases examined, the putative positional TFBSs contain
fewer false positives than the putative comparative TFBSs.

Positional regulomics can identify sets of co-regulating
TFBSs and co-regulated genes

TFs combine to form cis-regulatory modules (CRMs),
complexes controlling gene transcription. Thus, a CRM
interacts with certain TFBSs and controls certain genes.
The following graphical method predicts co-regulating
TFBSs and co-regulated genes, without prior knowledge
of the specific TFs in the CRM. By applying the
techniques of systems biology to CRMs, the method
enhances the dependability and interpretability of
predictions.

Table 3. TFBS words corresponding to two clusters, whose gene groups have significantly different microarray expression patterns

DNA Word Factor Distance from TSS (bp) P-value

CCCCGCCC c-Myc, AP-2alphaA, E2F-1, NF-AT1, MAZ �65, �20 2.24E-04
CCGCCGCC YY1, Egr-1, AP-2alphaA, Sp1, Sp3 63, 13 4.18E-02
CGCCCCGC Sp1, Sp3, E2F-1, Egr-1 �176, 41 4.04E-02
CGCCGCTG Unidentified 15, 39 4.66E-04
CGGGCGGC DP-1, E2F:DP, Sp1, GKLF �15, 23 1.16E-07
GAGGCGGC Unknown �16, 20 2.85E-02
GGGCGGCG Sp1, NF-Y, GKLF �20, 143 1.15E-11

The rows in the table reflect the lexicographic order of the words in column 1. Each word corresponds to TFs in column 2. Each word corresponds
to two clusters, whose average positions relative to the TSS are in column 3. Fisher inverse chi-squared test yielded a (multiple test corrected)
two-sided P-value (in column 4), which quantifies the overall differences in expression between the gene group pair in the 74 tissues.
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We assembled a dataset containing all genes with
complete GO and microarray GNF Atlas 2 data and
corresponding to at least one significant cluster. The
resulting 3589 genes constituted nodes in each of three
networks (i.e. graphs), corresponding to three sources of

information: (i) the positionally significant words, (ii) the
GO annotation and (iii) the microarray Atlas. A Pearson
correlation coefficient quantified pairwise similarity
between genes, based on the significant words occurring
in their promoters (see the Methods section). In the
corresponding networks, an edge joined a gene pair, if the
pair scored above the 95th percentile for the correspond-
ing measure: (i) 0.566 for the Pearson correlation
coefficient quantifying TF similarity; (ii) 0.588 for the
GO semantic similarity or (iii) 0.546 for the PCC from the
microarray Atlas data. The 95th percentile was an
arbitrary choice, because considerations of computational
time precluded a thorough exploration of possible
thresholds.
The three sources of information validated each other’s

conclusions as follows. In Figure 3A, UPGMA
(unweighted pair group method with arithmetic mean)
clustered the genes by GO semantic similarity; in
Figure 3B, by the similarity of the set of positionally
significant words contained in the corresponding promot-
ers. The organized patterns of color in Figure 3 display the
correlations between the three sources of information
(GO, microarray Atlas data and positional regulomics), so
the sources validated each other. Integration of positional,
functional and co-expression information generated an
intersection network (see the Methods section). Figure 4
shows the gene expression profiles for the most densely
connected set of genes, sharing common positional,
functional and co-expression properties. Some other
profiles appear in Supplementary Figure S4. Therefore,
positional regulomics can be combined with (and vali-
dated by) other sources of information, to identify
modules of TFBSs and coregulated genes.

Algorithm and Datasets

A Cþþ computer program implemented the algorithm
identifying significant clusters of eight-letter words in
anchored promoter sequences. A UNIX-compatible ver-
sion of the program with user-tunable parameters is
available for download at the following URL: ftp://
ftp.ncbi.nlm.nih.gov/pub/marino/published/positional_
regulomics/, along with the pairwise GO functional
similarities for 3589 transcripts.

DISCUSSION

Historically, the lambda repressor was the first experi-
mental system known to us to show that position (as well
as sequence) influences a TFBS’s function. Using the TSS
as a genomic landmark, positional regulomics provides
strong statistical evidence that in human transcription, the
phenomenon is not isolated: if not commonly, at least not
rarely, a TFBS’s position as well as its sequence can
influence the strength of activation or repression of a gene.
Some TFs (e.g. AP-2alphaA, ER-alpha, Sp1, Sp3, p53,
NRF-1) appear to bind to different positions relative to
the TSS, to regulate different genes in different tissues.
Moreover, a TFBS’s position appears to influence
biological function, not just strength of that function.
These conclusions rely on data about exact words
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Figure 2. Density of regulatory and repetitive DNA sequences in human
core promoters. The plot displays results for 7914 human core promoters.
Its X-axis runs from �1000 bp to þ1000 bp, relative to the TSS for
each promoter at 0 bp. The Y-axis represents the normalized count of:
(A) TE-derived sequences; (B) TFBSs predicted with our positional
methods and (C) TFBSs predicted with phylogenetic footprinting. In each
case, the raw counts were normalized to make the area under each graph 1.
The boundaries of the three curves indicate the density of predicted
sequences in the different regions. Our methods tend to predict TFBSs in
the [�200, þ100] region of core promoters.
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(i.e. a single sequence pattern with no alternatives), so an
analysis based on sequence alone, without position, has no
obvious opportunity to draw similar conclusions.
Some experimental results for specific TFBSs support

our conclusions about position. The word CCGCCGCC
matches the TRANSFAC motif for the YY1 factor and
clusters at two different locations (þ13 and þ63 bp
relative to the TSS) (Table 3). The cluster at þ63 bp
contains transcripts significantly overexpressed in T cells

(PB-CD4þTcells, PB-CD8þTcells). In contrast, the clus-
ter located at þ13 bp contains transcripts significantly
underexpressed in medulla oblongata (Medulla
Oblongata). In fact, experimentally, YY1 acts as an
activator or repressor, depending on its binding context
within a promoter (35,36). Moreover, YY1 enhances
transcription in T cells but represses it elsewhere (37). In
addition to YY1, our predictions concerning the dual
regulatory roles of several other TFs, notably Sp-1 (38),
Sp3 (39), and AP-2alphaA (40) matched evidence from
experimental literature.

Despite its interesting strengths, our study has some
limitations, particularly with respect to alternative pro-
moters. Our dataset contained PPRs corresponding to as
many as 4603 genes with putative alternative promoters.
In each of these genes, the alternative TSS were spaced at
least 500 bp apart (17). Typically, data about functional
similarity and microarray expression do not specify
possible alternative start sites: the basic unit in both
types of data is usually the gene. Alternative promoter
usage can have tissue and sequence-context specificity,
so the lack of information about alternative promoters
probably restricted the precision and scope of our
conclusions. If a complete catalogue of annotated
promoters and alternative transcripts were available,
however, a microarray could use probes with transcript-
specific 50 ends to distinguish among alternative promot-
ers. Similarly, GO annotation could distinguish alternative
promoters, if it contained the relevant additional
information.

In this study, most positions in most clusters were in
conserved regions relative to the mouse genome. Because
the positions likely represent TFBSs with a common
functionality in the human, most such TFBSs likely
represent functionality common to both human and
mouse. Our methods could not judge, however, the
conservation of individual TFBSs in the two genomes or
the TFBSs missed (41–44) by phylogenetic analysis (7,30).
Variation of individual TFBSs might be one process
differentiating species, but our results suggest that only
relatively small subsets of TFBSs with a common function
display nucleotide changes between human and mouse.

Finally, exact words yield a limited representation of
TFBSs. Position-specific scoring matrices (PSSMs) are
much more flexible. We are currently implementing
improvements to A-GLAM (11), our Gibbs sampler
program for finding TFBSs, to combine sequence infor-
mation with positional information from datasets with
genomic anchors, e.g. the TSS. Initial results indicate that
position can contribute substantially to the accuracy of
sequence motif predictions. Genomic landmarks serve as a
‘poor man’s alignment’, even when precise sequence
alignment is impossible. For genes that contain a
common TFBS, suggesting co-regulation, our results
indicate that positional regulomics can detect positional
regulation and thereby unravel the mechanisms under-
lying diverse functionality and/or expression patterns, by
exploiting the location of the TFBS. Further, the resulting
models from positional regulomics systematically identify
additional genes regulated in a similar manner. Thus,
given the success of comparative genomics and its basis in

Figure 3. Gene profile correlation matrices. The UPGMA method
clustered genes by their GO-derived functional similarity. The matrix in
Figure 3A orders the genes identically on both axes by functional
similarity. Each off-diagonal element in the matrix corresponds to a
pair of different genes. The color of an element codes the Pearson
correlation coefficient for the co-expression of the corresponding gene-
pair in the microarray data. The off-diagonal blocks of consistent color
indicate that functionally similar groups of genes have similar
expression patterns. For comparison, the inset in the plot shows a
negative control. The inset’s matrix orders the genes identically on both
axes, but randomly. Accordingly, the matrix lacks off-diagonal blocks
of consistent color. The matrix in Figure 3B orders the genes identically
on both axes, according to the similarity of the set of positionally
significant words contained in the corresponding promoters (see the
Methods section). The off-diagonal blocks of consistent color indicate
that positional regulomics predicted groups of genes with similar
expression patterns.
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sequence alignment, positional regulomics appears pro-
mising indeed.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

This research was supported by the Intramural Research
Program of the NIH, NLM, NCBI. Funding to pay the
Open Access publication charges for this article was
provided by NIH, NLM.

Conflict of interest statement. None declared.

REFERENCES

1. Banerjee,N. and Zhang,M.Q. (2002) Functional genomics as applied
to mapping transcription regulatory networks. Curr. Opin.
Microbiol., 5, 313–317.

2. Elnitski,L., Jin,V.X., Farnham,P.J. and Jones,S.J. (2006) Locating
mammalian transcription factor binding sites: a survey of compu-
tational and experimental techniques. Genome Res., 16, 1455–1464.

3. Rando,O.J. (2007) Chromatin structure in the genomics era.
Trends Genet., 23, 67–73.

4. Marino-Ramirez,L., Kann,M.G., Shoemaker,B.A. and
Landsman,D. (2005) Histone structure and nucleosome stability.
Expert Rev. Proteomics, 2, 719–729.

5. Ptashne,M., Johnson,A.D. and Pabo,C.O. (1982) A genetic switch
in a bacterial virus. Sci. Am., 247, 128–130, 132, 134–140.

6. Kielbasa,S.M., Korbel,J.O., Beule,D., Schuchhardt,J. and Herzel,H.
(2001) Combining frequency and positional information to predict
transcription factor binding sites. Bioinformatics, 17, 1019–1026.

Figure 4. A highly interconnected sub-network of genes from the intersection network. The top of the figure shows the genes’ microarray
co-expression matrix. Its rows correspond to genes; its columns, to tissues. The bottom of the figure shows the intersection sub-network for the genes.
Clearly, the sub-network of genes shares a common expression pattern.

Nucleic Acids Research, 2008 9



7. Xie,X.H., Lu,J., Kulbokas,E.J., Golub,T.R., Mootha,V.,
Lindblad-Toh,K., Lander,E.S. and Kellis,M. (2005) Systematic
discovery of regulatory motifs in human promoters and 30 UTRs by
comparison of several mammals. Nature, 434, 338–345.

8. Zhang,C., Xuan,Z., Otto,S., Hover,J.R., McCorkle,S.R., Mandel,G.
and Zhang,M.Q. (2006) A clustering property of highly-degenerate
transcription factor binding sites in the mammalian genome.
Nucleic Acids Res., 34, 2238–2246.

9. FitzGerald,P.C., Shlyakhtenko,A., Mir,A.A. and Vinson,C. (2004)
Clustering of DNA sequences in human promoters. Genome Res.,
14, 1562–1574.

10. Marino-Ramirez,L., Jordan,I.K. and Landsman,D. (2006) Multiple
independent evolutionary solutions to core histone gene regulation.
Genome Biol., 7, R122.

11. Tharakaraman,K., Marino-Ramirez,L., Sheetlin,S., Landsman,D.
and Spouge,J.L. (2005) Alignments anchored on genomic
landmarks can aid in the identification of regulatory elements.
Bioinformatics, 21, I440–I448.

12. Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G.,
Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M.,
Schuler,G.D., Altschul,S.F. et al. (2002) Generation and initial
analysis of more than 15,000 full-length human and mouse cDNA
sequences. Proc. Natl Acad. Sci. USA, 99, 16899–16903.

13. Suzuki,Y., Yamashita,R., Nakai,K. and Sugano,S. (2002) DBTSS:
DataBase of human transcriptional start sites and full-length
cDNAs. Nucleic Acids Res., 30, 328–331.

14. Ota,T., Suzuki,Y., Nishikawa,T., Otsuki,T., Sugiyama,T., Irie,R.,
Wakamatsu,A., Hayashi,K., Sato,H., Nagai,K. et al. (2004)
Complete sequencing and characterization of 21,243 full-length
human cDNAs. Nat. Genet., 36, 40–45.

15. Marino-Ramirez,L., Spouge,J.L., Kanga,G.C. and Landsman,D.
(2004) Statistical analysis of over-represented words in human
promoter sequences. Nucleic Acids Res., 32, 949–958.

16. Matys,V., Fricke,E., Geffers,R., Gossling,E., Haubrock,M.,
Hehl,R., Hornischer,K., Karas,D., Kel,A.E., Kel-Margoulis,O.V.
et al. (2003) TRANSFAC: transcriptional regulation, from patterns
to profiles. Nucleic Acids Res., 31, 374–378.

17. Kimura,K., Wakamatsu,A., Suzuki,Y., Ota,T., Nishikawa,T.,
Yamashita,R., Yamamoto,J., Sekine,M., Tsuritani,K., Wakaguri,H.
et al. (2006) Diversification of transcriptional modulation:
large-scale identification and characterization of putative alternative
promoters of human genes. Genome Res., 16, 55–65.

18. Azuaje,F., Wang,H. and Bodenreider,O. (2005) In ISCB (ed.),
Proceedings of the ISMB’2005 SIG meeting on Bio-ontologies,
Detroit, MI, The International Society for Computational Biology.
San Diego, CA, pp. 9–10.

19. Su,A.I., Wiltshire,T., Batalov,S., Lapp,H., Ching,K.A., Block,D.,
Zhang,J., Soden,R., Hayakawa,M., Kreiman,G. et al. (2004) A gene
atlas of the mouse and human protein-encoding transcriptomes.
Proc. Natl Acad. Sci. USA, 101, 6062–6067.

20. Maglott,D.R., Katz,K.S., Sicotte,H. and Pruitt,K.D. (2000) NCBI’s
LocusLink and RefSeq. Nucleic Acids Res., 28, 126–128.

21. Stormo,G.D. and Fields,D.S. (1998) Specificity, free energy and
information content in protein-DNA interactions. Trends Biochem.
Sci., 23, 109–113.

22. Shannon,P., Markiel,A., Ozier,O., Baliga,N.S., Wang,J.T.,
Ramage,D., Amin,N., Schwikowski,B. and Ideker,T. (2003)
Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res., 13, 2498–2504.

23. Bader,G.D. and Hogue,C.W. (2003) An automated method for
finding molecular complexes in large protein interaction networks.
BMC Bioinformatics, 4, 2.

24. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al.
(2000) Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat. Genet., 25, 25–29.

25. Al-Shahrour,F., Diaz-Uriarte,R. and Dopazo,J. (2004) FatiGO: a
web tool for finding significant associations of Gene Ontology
terms with groups of genes. Bioinformatics, 20, 578–580.

26. Jansen,R., Yu,H., Greenbaum,D., Kluger,Y., Krogan,N.J.,
Chung,S., Emili,A., Snyder,M., Greenblatt,J.F. and Gerstein,M.
(2003) A Bayesian networks approach for predicting protein-protein
interactions from genomic data. Science, 302, 449–453.

27. Hvidsten,T.R., Laegreid,A. and Komorowski,J. (2003) Learning
rule-based models of biological process from gene expression time
profiles using gene ontology. Bioinformatics, 19, 1116–1123.

28. Vardhanabhuti,S., Wang,J. and Hannenhalli,S. (2007) Position
and distance specificity are important determinants of cis-regulatory
motifs in addition to evolutionary conservation. Nucleic Acids Res.,
35, 3203–3213.

29. Bailey,T.L. and Gribskov,M. (1998) Combining evidence using
p-values: application to sequence homology searches.
Bioinformatics, 14, 48–54.

30. Cliften,P., Sudarsanam,P., Desikan,A., Fulton,L., Fulton,B.,
Majors,J., Waterston,R., Cohen,B.A. and Johnston,M. (2003)
Finding functional features in Saccharomyces genomes by
phylogenetic footprinting. Science, 301, 71–76.

31. Jordan,I.K., Rogozin,I.B., Glazko,G.V. and Koonin,E.V. (2003)
Origin of a substantial fraction of human regulatory sequences from
transposable elements. Trends Genet., 19, 68–72.

32. Marino-Ramirez,L. and Jordan,I.K. (2006) Transposable element
derived DNaseI-hypersensitive sites in the human genome. Biol.
Direct, 1, 20.

33. Marino-Ramirez,L., Lewis,K.C., Landsman,D. and Jordan,I.K.
(2005) Transposable elements donate lineage-specific regulatory
sequences to host genomes. Cytogenet. Genome Res., 110, 333–341.

34. Jurka,J. (2000) Repbase update: a database and an electronic
journal of repetitive elements. Trends Genet., 16, 418–420.

35. Shi,Y., Seto,E., Chang,L.S. and Shenk,T. (1991) Transcriptional
repression by YY1, a human GLI-Kruppel-related protein, and
relief of repression by adenovirus E1A protein. Cell, 67, 377–388.

36. Yang,W.M., Inouye,C., Zeng,Y., Bearss,D. and Seto,E. (1996)
Transcriptional repression by YY1 is mediated by interaction with a
mammalian homolog of the yeast global regulator RPD3.
Proc. Natl Acad. Sci. USA, 93, 12845–12850.

37. Ji,H.B., Gupta,A., Okamoto,S., Blum,M.D., Tan,L.,
Goldring,M.B., Lacy,E., Roy,A.L. and Terhorst,C. (2002)
T cell-specific expression of the murine CD3delta promoter. J. Biol.
Chem., 277, 47898–47906.

38. Innocente,S.A. and Lee,J.M. (2005) p53 is a NF-Y- and p21-
independent, Sp1-dependent repressor of cyclin B1 transcription.
FEBS Lett., 579, 1001–1007.

39. Ammanamanchi,S., Freeman,J.W. and Brattain,M.G. (2003)
Acetylated sp3 is a transcriptional activator. J. Biol. Chem., 278,
35775–35780.

40. Rietveld,L.E., Koonen-Reemst,A.M., Sussenbach,J.S. and
Holthuizen,P.E. (1999) Dual role for transcription factor AP-2 in
the regulation of the major fetal promoter P3 of the gene for human
insulin-like growth factor II. Biochem. J., 338(Pt 3), 799–806.

41. O’Lone,R., Frith,M.C., Karlsson,E.K. and Hansen,U. (2004)
Genomic targets of nuclear estrogen receptors. Mol. Endocrinol., 18,
1859–1875.

42. Thomas,J.W., Touchman,J.W., Blakesley,R.W., Bouffard,G.G.,
Beckstrom-Sternberg,S.M., Margulies,E.H., Blanchette,M.,
Siepel,A.C., Thomas,P.J., McDowell,J.C. et al. (2003) Comparative
analyses of multi-species sequences from targeted genomic regions.
Nature, 424, 788–793.

43. Roh,T.Y., Wei,G., Farrell,C.M. and Zhao,K. (2007) Genome-wide
prediction of conserved and nonconserved enhancers by histone
acetylation patterns. Genome Res., 17, 74–81.

44. Alkema,W. and Wasserman,W.W. (2003) Understanding the
language of gene regulation. Genome Biol., 4, 327.

10 Nucleic Acids Research, 2008


